Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 13(1): 6434, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2291796

ABSTRACT

To model the COVID-19 infection and develop effective control measures, this paper proposes an SEIR-type epidemic model considering the impact of face-mask wearing and vaccination. Firstly, the effective reproduction number and the threshold conditions are obtained. Secondly, based on the data of South Korea from January 20, 2022 to March 21, 2022, the model parameters are estimated. Finally, a sensitivity analysis and the numerical study are conducted. The results show that the face-mask wearing is associated with [Formula: see text] and [Formula: see text] reductions in the numbers of cumulative cases and newly confirmed cases, respectively, after a period of 60 days, when the face mask wearing rate increases by [Formula: see text]. Furthermore, the vaccination rate is associated with [Formula: see text] and [Formula: see text] reductions in the numbers of cumulative cases and the newly confirmed cases, respectively, after the same period of 60 days when the vaccination rate is increased by [Formula: see text]. A combined measure involving face-mask wearing and vaccination may be more effective and reasonable in preventing and controlling this infection. It is also suggested that disease control departments should strongly recommended the wearing of face masks s as well as vaccination to prevent the unvaccinated people from becoming infected.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Masks , Vaccination , Basic Reproduction Number
2.
Ann Palliat Med ; 10(9): 9572-9582, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1449400

ABSTRACT

BACKGROUND: The current focus is largely on whole course medical management of coronavirus disease-19 (COVID-19) with real-time polymerase chain reaction (RT-PCR) and radiological features, while the mild cases are usually missed. Thus, combination of multiple diagnostic methods is urgent to understand COVID-19 fully and to monitor the progression of COVID-19. METHODS: laboratory variables of 40 mild COVID-19 patients, 30 patients with community-acquired pneumonia (CAP) and 32 healthy individuals were analyzed by principal component analysis (PCA), Kruskal test, Procrustes test, the vegan package in R, CCA package and receiver operating characteristic to investigate the characteristics of the laboratory variables and their relationships in COVID-19. RESULTS: The correlations between the laboratory variables presented a variety of intricate linkages in the COVID-19 group compared with the healthy group and CAP patient group. The prediction probability of the combination of lymphocyte count (LY), eosinophil (EO) and platelets (PLT) was 0.847, 0.854 for the combination of lactate (LDH), creatine kinase isoenzyme (CK-MB), and C-reactive protein (CRP), 0.740 for the combination of EO, white blood cell count (WBC) and neutrophil count (NEUT) and 0.872 for the combination of CK-MB and P. CONCLUSIONS: The correlations between the laboratory variables in the COVID-19 group could be a unique characteristic showing promise as a method for COVID-19 prediction and monitoring progression of COVID-19 infection.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Cohort Studies , Humans , Pneumonia/diagnosis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL